28 resultados para Mesopore bioglass

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent and translucent SnO2 aerogels with high specific surface area (>300m(2)/g) have been prepared by sol-gel process using tetra(n-butoxy)tin(IV) as a starting compound, and supercritical drying technique for solvent extraction. Light scattering measurements reveal that the polymeric cluster size distribution in sol system is gradually broadened during sol-gel transition. SEM images show that the aerogels are made up of the cottonlike oxide agglomerates with a large number of Pores. TEM images show that these aerogels seem to be self-similar at different magnifications. Their pore size distribution is pretty wide ranging, from mesopore to macropore especially for that of translucent aerogel. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.